Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 12(2)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35207044

RESUMO

Ca2+-activated Cl- channels (TMEM16, also known as anoctamins) perform important functions in cell physiology, including modulation of cell proliferation and cancer growth. Many members, including TMEM16F/ANO6, additionally act as Ca2+-activated phospholipid scramblases. We recently presented evidence that ANO6-dependent surface exposure of phosphatidylserine (PS) is pivotal for the disintegrin-like metalloproteases ADAM10 and ADAM17 to exert their sheddase function. Here, we compared the influence of seven ANO family members (ANO1, 4, 5, 6, 7, 9, and 10) on ADAM sheddase activity. Similar to ANO6, overexpression of ANO4 and ANO9 led to increased release of ADAM10 and ADAM17 substrates, such as betacellulin, TGFα, and amphiregulin (AREG), upon ionophore stimulation in HEK cells. Inhibitor experiments indicated that ANO4/ANO9-mediated enhancement of TGFα-cleavage broadened the spectrum of participating metalloproteinases. Annexin V-staining demonstrated increased externalisation of PS in ANO4/ANO9-overexpressing cells. Competition experiments with the soluble PS-headgroup phosphorylserine indicated that the ANO4/ANO9 effects were due to increased PS exposure. Overexpression of ANO4 or ANO9 in human cervical cancer cells (HeLa), enhanced constitutive shedding of the growth factor AREG and increased cell proliferation. We conclude that ANO4 and ANO9, by virtue of their scramblase activity, may play a role as important regulators of ADAM-dependent cellular functions.

2.
Membranes (Basel) ; 12(2)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35207106

RESUMO

Proteolytic ectodomain release is a key mechanism for regulating the function of many cell surface proteins. The sheddases ADAM10 and ADAM17 are the best-characterized members of the family of transmembrane disintegrin-like metalloproteinase. Constitutive proteolytic activities are low but can be abruptly upregulated via inside-out signaling triggered by diverse activating events. Emerging evidence indicates that the plasma membrane itself must be assigned a dominant role in upregulation of sheddase function. Data are discussed that tentatively identify phospholipid scramblases as central players during these events. We propose that scramblase-dependent externalization of the negatively charged phospholipid phosphatidylserine (PS) plays an important role in the final activation step of ADAM10 and ADAM17. In this manuscript, we summarize the current knowledge on the interplay of cell membrane changes, PS exposure, and proteolytic activity of transmembrane proteases as well as the potential consequences in the context of immune response, infection, and cancer. The novel concept that scramblases regulate the action of ADAM-proteases may be extendable to other functional proteins that act at the cell surface.

3.
Int J Mol Sci ; 22(5)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800462

RESUMO

Human CD137 (4-1BB), a member of the TNF receptor family, and its ligand CD137L (4-1BBL), are expressed on immune cells and tumor cells. CD137/CD137L interaction mediates bidirectional cellular responses of potential relevance in inflammatory diseases, autoimmunity and oncology. A soluble form of CD137 exists, elevated levels of which have been reported in patients with rheumatoid arthritis and various malignancies. Soluble CD137 (sCD137) is considered to represent a splice variant of CD137. In this report, however, evidence is presented that A Disintegrin and Metalloproteinase (ADAM)10 and potentially also ADAM17 are centrally involved in its generation. Release of sCD137 by transfected cell lines and primary T cells was uniformly inhibitable by ADAM10 inhibition. The shedding function of ADAM10 can be blocked through inhibition of its interaction with surface exposed phosphatidylserine (PS), and this effectively inhibited sCD137 generation. The phospholipid scramblase Anoctamin-6 (ANO6) traffics PS to the outer membrane and thus modifies ADAM10 function. Overexpression of ANO6 increased stimulated shedding, and hyperactive ANO6 led to maximal constitutive shedding of CD137. sCD137 was functionally active and augmented T cell proliferation. Our findings shed new light on the regulation of CD137/CD137L immune responses with potential impact on immunotherapeutic approaches targeting CD137.


Assuntos
Proteína ADAM10/metabolismo , Proteína ADAM17/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Artrite Reumatoide/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Anoctaminas/metabolismo , Artrite Reumatoide/patologia , Membrana Celular/metabolismo , Células HEK293 , Células HT29 , Humanos , Neoplasias/patologia , Proteínas de Transferência de Fosfolipídeos/metabolismo , Linfócitos T/metabolismo , Linfócitos T/patologia
4.
Life Sci Alliance ; 2(5)2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31455669

RESUMO

ADAM17, prominent member of the "Disintegrin and Metalloproteinase" (ADAM) family, controls vital cellular functions through cleavage of transmembrane substrates. Several of these play central roles in oncogenesis and inflammation, yet despite its importance, the mechanism by which ADAM17 is activated is not fully understood. We recently presented evidence that surface exposure of phosphatidylserine (PS) is the penultimate event required for sheddase activation, which occurs upon binding of a membrane-proximal, cationic binding motif to the anionic phospholipid headgroup. Here, we show that mutagenesis of the 3 amino acids constituting the PS-binding motif leads to embryonic lethality in mice. Heterozygotes showed no abnormalities. Primary hepatocytes and fibroblasts were analysed and found to express the mutant protease on the cell surface. However, PMA-stimulated release of ADAM17 substrates was completely abolished. The results directly support the novel concept of transiently externalised PS as essential trigger of extracellular protease function in vivo.


Assuntos
Proteína ADAM17/química , Proteína ADAM17/genética , Mutação , Fosfatidilserinas/metabolismo , Proteína ADAM17/metabolismo , Animais , Sítios de Ligação , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Genes Letais , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Camundongos , Cultura Primária de Células , Acetato de Tetradecanoilforbol/análogos & derivados , Acetato de Tetradecanoilforbol/farmacologia
5.
J Mol Cell Biol ; 11(11): 979-993, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-30753537

RESUMO

Dysregulation of the disintegrin-metalloproteinase ADAM10 may contribute to the development of diseases including tumorigenesis and Alzheimer's disease. The mechanisms underlying ADAM10 sheddase activation are incompletely understood. Here, we show that transient exposure of the negatively charged phospholipid phosphatidylserine (PS) is necessarily required. The soluble PS headgroup was found to act as competitive inhibitor of substrate cleavage. Overexpression of the Ca2+-dependent phospholipid scramblase Anoctamin-6 (ANO6) led to increased PS externalization and substrate release. Transfection with a constitutively active form of ANO6 resulted in maximum sheddase activity in the absence of any stimulus. Calcium-dependent ADAM10 activation could not be induced in lymphocytes of patients with Scott syndrome harbouring a missense mutation in ANO6. A putative PS-binding motif was identified in the conserved stalk region. Replacement of this motif resulted in strong reduction of sheddase activity. In conjunction with the recently described 3D structure of the ADAM10 extracellular domain, a model is advanced to explain how surface-exposed PS triggers ADAM10 sheddase function.


Assuntos
Proteína ADAM10/metabolismo , Membrana Celular/metabolismo , Ativação Enzimática , Proteína ADAM10/química , Sequência de Aminoácidos , Animais , Anoctaminas/metabolismo , Biomarcadores , Células COS , Linhagem Celular , Chlorocebus aethiops , Eritrócitos/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Modelos Biológicos , Fosfosserina/metabolismo , Coelhos , Relação Estrutura-Atividade
6.
Biochim Biophys Acta Mol Cell Res ; 1865(11 Pt A): 1598-1610, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30327201

RESUMO

ADAM17, a prominent member of the "Disintegrin and Metalloproteinase" (ADAM) family, controls vital cellular functions through cleavage of transmembrane substrates including TGF-alpha, Amphiregulin (AREG) and TNF-Receptor 1 (TNFR1). We recently presented evidence that surface exposure of phosphatidylserine (PS) is pivotal for ADAM17 to exert sheddase activity. Anoctamin-6 (ANO6) has Ca2+-dependent phospholipid scramblase activity and it followed that the functions of ANO6 and ADAM17 might be linked. We report that overexpression of ANO6 in HEK293T cells led to increased Ca2+-mediated PS-exposure that was indeed accompanied by enhanced release of AREG and TGF-alpha. The effect was not observed when cells were treated with the PKC-dependent ADAM17 activator PMA. Transformation of cells with a constitutively active ANO6 mutant led to spontaneous PS-exposure and to the release of ADAM17-substrates in the absence of any stimuli. Inhibitor experiments indicated that ANO6-mediated enhancement of substrate cleavage simultaneously broadened the spectrum of participating metalloproteinases. In complementary experiments, siRNA-mediated downregulation of ANO6 was shown to decrease ionophore-mediated release of TNFR1 in human umbilical vein endothelial cells (HUVECs). We conclude that ANO6, by virtue of its scramblase activity, may play a role as an important regulator of the ADAM-network in the plasma membrane.


Assuntos
Proteínas ADAM/metabolismo , Anoctaminas/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Fosfolipídeos/metabolismo , Proteína ADAM17/metabolismo , Cálcio/metabolismo , Membrana Celular/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Ionomicina/farmacologia , Modelos Biológicos , Mutação , Fator de Crescimento Transformador alfa/metabolismo
7.
Oncotarget ; 8(42): 72584-72596, 2017 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-29069811

RESUMO

ADAM17, a prominent member of the "Disintegrin and Metalloproteinase" (ADAM) family, is an important regulator of endothelial cell proliferation and cell survival. The protease controls vital cellular functions through cleavage of growth factors, cytokines and their receptors including transforming growth factor-alpha (TGF-α), tumor necrosis factor-alpha (TNF-α) and TNF-α receptor 1 (TNFR1). TNF-α is the major inducer of endothelial cell death in cardiovascular diseases. The latter are also characterized by elevated plasma and tissue levels of extracellular sphingomyelinase (SMase). Whether the SMase affects ADAM activity and thus endothelial cell function has not been addressed to date. Here, we analyzed the effect of SMase on ADAM17-mediated shedding in COS7 cells and in human umbilical vein endothelial cells (HUVECs). Exposure to SMase significantly increased ADAM17-mediated release of alkaline-phosphatase (AP)-tagged TGF-α in COS7 cells and shedding of endogenously expressed TNFR1 in HUVECs. We previously presented evidence that surface exposure of phosphatidylserine (PS) is pivotal for ADAM17 to exert sheddase function. We found that SMase treatment led to PS externalization in both cell types. Transient non-apoptotic PS exposure is often mediated by Ca2+-dependent phospholipid scramblases. Accordingly, the Ca2+-chelator EGTA markedly reduced the breakdown of phospholipid asymmetry and shedding of TGF-α and TNFR1. Moreover, sheddase activity was significantly diminished in the presence of the competing PS-headgroup OPLS. SMase-stimulated TNFR1 shedding strikingly diminished TNF-α-induced signalling cascades and endothelial cell death. Taken together, our data suggest that SMase activity might act as protective factor for endothelial cells in cardiovascular diseases.

8.
Biochim Biophys Acta Mol Cell Res ; 1864(11 Pt B): 2082-2087, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28624437

RESUMO

BACKGROUND: ADAM10 and ADAM17 are the best characterized members of the ADAM (A Disintegrin and Metalloproteinase) - family of transmembrane proteases. Both are involved diverse physiological and pathophysiological processes. ADAMs are known to be regulated by posttranslational mechanisms. However, emerging evidence indicates that the plasma membrane with its unique dynamic properties may additionally play an important role in controlling sheddase function. SCOPE OF REVIEW: Membrane events that could contribute to regulation of ADAM-function are summarized. MAJOR CONCLUSIONS: Surface expression of peptidolytic activity should be differentiated from ADAM-sheddase function since the latter additionally requires that the protease finds its substrate in the lipid bilayer. We propose that this is achieved through horizontal and vertical reorganization of membrane nanoarchitecture coordinately occurring at the sites of sheddase activation. Reshuffling of nanodomains thereby guides traffic of enzyme and substrate to each other. For ADAM17 phosphatidylserine exposure is required to then induce its shedding function. GENERAL SIGNIFICANCE: The novel concept that physicochemical properties of the lipid bilayer govern the action of ADAM-proteases may be extendable to other functional proteins that act at the cell surface. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.


Assuntos
Proteína ADAM10/genética , Proteína ADAM17/genética , Secretases da Proteína Precursora do Amiloide/genética , Proteínas de Membrana/genética , Proteólise , Proteína ADAM10/metabolismo , Proteína ADAM17/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Fosfatidilserinas/genética , Fosfatidilserinas/metabolismo
10.
Nat Commun ; 7: 11523, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27161080

RESUMO

ADAM17, a prominent member of the 'Disintegrin and Metalloproteinase' (ADAM) family, controls vital cellular functions through cleavage of transmembrane substrates. Here we present evidence that surface exposure of phosphatidylserine (PS) is pivotal for ADAM17 to exert sheddase activity. PS exposure is tightly coupled to substrate shedding provoked by diverse ADAM17 activators. PS dependency is demonstrated in the following: (a) in Raji cells undergoing apoptosis; (b) in mutant PSA-3 cells with manipulatable PS content; and (c) in Scott syndrome lymphocytes genetically defunct in their capacity to externalize PS in response to intracellular Ca(2+) elevation. Soluble phosphorylserine but not phosphorylcholine inhibits substrate cleavage. The isolated membrane proximal domain (MPD) of ADAM17 binds to PS but not to phosphatidylcholine liposomes. A cationic PS-binding motif is identified in this domain, replacement of which abrogates liposome-binding and renders the protease incapable of cleaving its substrates in cells. We speculate that surface-exposed PS directs the protease to its targets where it then executes its shedding function.


Assuntos
Proteína ADAM17/metabolismo , Fosfatidilserinas/metabolismo , Proteína ADAM17/química , Proteína ADAM17/deficiência , Proteína ADAM17/genética , Sequência de Aminoácidos , Animais , Apoptose/fisiologia , Transtornos da Coagulação Sanguínea/sangue , Transtornos da Coagulação Sanguínea/genética , Linhagem Celular , Ativação Enzimática , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Meliteno/farmacologia , Camundongos , Camundongos Knockout , Modelos Biológicos , Domínios Proteicos , Especificidade por Substrato
11.
Med Microbiol Immunol ; 203(6): 383-93, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24985035

RESUMO

The digestive vacuole (DV) of Plasmodium falciparum, which is released into the bloodstream upon rupture of each parasitized red blood cell (RBC), was recently discovered to activate the alternative complement pathway. In the present work, we show that C3- and C5-convertases assembling on the parasitic organelle are able to provoke deposition of activated C3 and C5b-9 on non-infected bystander erythrocytes. Direct contact of DVs with cells is mandatory for the effect, and bystander complement deposition occurs focally, possibly at the sites of contact. Complement opsonization promotes protracted erythrophagocytosis by human macrophages, an effect that is magnified when ring-stage infected RBCs with reduced CD55 and CD59, or paroxysmal nocturnal hemoglobinuria (PNH)-RBCs lacking these complement inhibitors are employed as targets. Bystander attack can also directly induce lysis of PNH-RBCs. Direct evidence for complement activation and bystander attack mediated by DVs was obtained through immunohistochemical analyses of brain paraffin sections from autopsies of patients who had died of cerebral malaria. C3d and the assembled C5b-9 complex could be detected in all sections, colocalizing with and often extending locally beyond massive accumulations of DVs that were identified under polarized light. This is the first demonstration that a complement-activating particle can mediate opsonization of bystander cells to promote their antibody-independent phagocytosis. The phenomenon may act in concert with other pathomechanisms to promote the development of anemia in patients with severe malaria.


Assuntos
Efeito Espectador , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Eritrócitos/imunologia , Fagocitose , Plasmodium falciparum/imunologia , Vacúolos/imunologia , Encéfalo/patologia , Eritrócitos/patologia , Humanos , Imuno-Histoquímica
12.
Clin Biochem ; 46(1-2): 20-5, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23010447

RESUMO

Atherosclerosis is widely regarded as a chronic inflammatory disease that develops as a consequence of entrapment of oxidized low-density lipoprotein (LDL) in the arterial intima and its interaction with components of both innate and adaptive immunity. This article reviews the role of the complement system in the context of a different concept on atherogenesis. Arguments are forwarded in support of the contention that enzymatic and not oxidative modification of LDL is the prerequisite for transforming the lipoprotein into a moiety that is recognized by the innate immune system. In a departure from general wisdom, it is proposed that these processes are initially not pathological. To the contrary, they are physiological and meaningful because only thus can the stranded lipoprotein with its insoluble cargo, cholesterol, be removed from tissues. It is contended that histopathologically defined initial foam cell formation develops without inflammation and is reversible. Atherosclerosis as a disease evolves only when the cholesterol removal machinery is overloaded and it then represents a special type of immunopathological process primarily involving immune effectors of the innate rather than the adaptive immune system. This sets it apart from classical immunopathological reactions that are all based on dysfunctional adaptive immunity. But as with all other diseases of known origin, a defined molecular trigger, enzymatically modified-LDL (eLDL), exists whose intimal accumulation is required to initiate the pathologic process. And as with other diseases, the course of atherosclerosis will then be influenced by myriad genetic, endogenous, and environmental factors that by themselves, however, will not cause the disease. This simple concept is completely in line with general clinical experience and with the results of major clinical trials that have been conducted during the past decades.


Assuntos
Aterosclerose/etiologia , Proteínas do Sistema Complemento/metabolismo , Lipoproteínas LDL/metabolismo , Aterosclerose/imunologia , Proteína C-Reativa/metabolismo , Colesterol/metabolismo , Ativação do Complemento , Células Espumosas/metabolismo , Células Espumosas/patologia , Humanos , Inflamação/metabolismo , Lipoproteínas LDL/imunologia
13.
Cell Transplant ; 22(7): 1185-99, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23031318

RESUMO

Human umbilical cord vein endothelial cells (HUVECs) secrete a number of factors that greatly impact the proliferation and differentiation of hematopoietic stem and progenitor cells (HSPCs). These factors remain largely unknown. Here, we report on the most comprehensive proteomic profiling of the HUVEC secretome and identified 827 different secreted proteins. Two hundred and thirty-one proteins were found in all conditions, whereas 369 proteins were identified only under proinflammatory conditions following IL-1ß, IL-3, and IL-6 stimulation. Thirteen proteins including complement factor b (CFb) were identified only under IL-1ß and IL-3 conditions and may potentially represent HSPC proliferation factors. The combination of bioinformatics and gene ontology annotations indicates the role of the complement system and its activation. Furthermore, CFb was found to be transcriptionally strongly upregulated. Addition of complement component 5b-9 (C5b-9) monoclonal antibody to the stem cell expansion assay was capable of significantly reducing their proliferation. This study suggests a complement-mediated cross-talk between endothelial cells and HSPCs under proinflammatory conditions.


Assuntos
Células-Tronco Hematopoéticas/efeitos dos fármacos , Interleucina-1beta/farmacologia , Interleucina-3/farmacologia , Interleucina-6/farmacologia , Proteômica , Anticorpos Monoclonais/farmacologia , Antígenos CD34/metabolismo , Proliferação de Células/efeitos dos fármacos , Complemento C5b/imunologia , Proteínas do Sistema Complemento/metabolismo , Biologia Computacional , Eletroforese em Gel de Poliacrilamida , Citometria de Fluxo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Peptídeos/análise , Espectrometria de Massas por Ionização por Electrospray , Regulação para Cima
14.
Med Microbiol Immunol ; 201(4): 599-604, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22955244

RESUMO

Plasmodium falciparum malaria claims 1 million lives around the globe every year. Parasitemia can reach remarkably high levels. The developing parasite digests hemoglobin and converts the waste product to hemozoin alias malaria pigment. These processes occur in a vesicular compartment named the digestive vacuole (DV). Each parasitized cell releases one DV upon rupture. Myriads of DVs thus gain entry into the blood, but whether they trigger pathobiological events has never been investigated. We recently discovered that the DV membrane simultaneously activates the two major enzyme cascades in blood, complement and coagulation. Activation of both is known to occur in patients with severe malaria, so discovery of the common trigger has large consequences. The DV membrane but not the merozoite has the capacity to spontaneously activate the alternative complement and intrinsic clotting pathway. Ejection of merozoites and the DV into the bloodstream, therefore, results in selective opsonization and phagocytosis of the DV, leaving merozoites free to invade new cells. The DV membrane furthermore has the capacity to assemble prothrombinase, the key convertase of the intrinsic clotting pathway. The dual capacity of the DV to activate both complement and coagulation can be suppressed by low-molecular-weight dextran sulfate. This agent protects experimental animals from the detrimental consequences, resulting from intravenous application of purified DVs. Phagocytosis of DVs not only deploys PMN away from merozoites, but also drives the cells into a state of functional exhaustion. This may be one reason for the enhanced susceptibility of patients with severe malaria toward systemic bacterial infections. Together, these findings indicate that the DV may represent a hitherto unrecognized, important determinant of parasite pathogenicity.


Assuntos
Malária Falciparum/patologia , Parasitemia/fisiopatologia , Plasmodium falciparum/patogenicidade , Vacúolos/metabolismo , Animais , Coagulação Sanguínea , Ativação do Complemento , Humanos , Malária Falciparum/parasitologia
15.
Med Microbiol Immunol ; 201(4): 419-26, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22972233

RESUMO

Membrane-perturbating proteins and peptides are widespread agents in biology. Pore-forming bacterial toxins represent major virulence factors of pathogenic microorganisms. Membrane-damaging peptides constitute important antimicrobial effectors of innate immunity. Membrane perturbation can incur multiple responses in mammalian cells. The present discussion will focus on the interplay between membrane-damaging agents and the function of cell-bound metalloproteinases of the ADAM family. These transmembrane enzymes have emerged as the major proteinase family that mediate the proteolytic release of membrane-associated proteins, a process designated as "shedding". They liberate a large spectrum of functionally active molecules including inflammatory cytokines, growth factor receptors and cell adhesion molecules, thereby regulating such vital cellular functions as cell-cell adhesion, cell proliferation and cell migration. ADAM activation may constitute part of the cellular recovery machinery on the one hand, but likely also promotes inflammatory processes on the other. The mechanisms underlying ADAM activation and the functional consequences thereof are currently the subject of intensive research. Attention here is drawn to the possible involvement of purinergic receptors and ceramide generation in the context of ADAM activation following membrane perturbation by membrane-active agents.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Toxinas Bacterianas/metabolismo , Interações Hospedeiro-Patógeno , Metaloproteinases da Matriz Associadas à Membrana/metabolismo , Adesão Celular , Movimento Celular , Proliferação de Células
17.
J Biol Chem ; 287(28): 23678-89, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-22613720

RESUMO

Melittin, the major component of the bee venom, is an amphipathic, cationic peptide with a wide spectrum of biological properties that is being considered as an anti-inflammatory and anti-cancer agent. It modulates multiple cellular functions but the underlying mechanisms are not clearly understood. Here, we report that melittin activates disintegrin-like metalloproteases (ADAMs) and that downstream events likely contribute to the biological effects evoked by the peptide. Melittin stimulated the proteolysis of ADAM10 and ADAM17 substrates in human neutrophil granulocytes, endothelial cells and murine fibroblasts. In human HaCaT keratinocytes, melittin induced shedding of the adhesion molecule E-cadherin and release of TGF-α, which was accompanied by transactivation of the EGF receptor and ERK1/2 phosphorylation. This was followed by functional consequences such as increased keratinocyte proliferation and enhanced cell migration. Evidence is provided that ATP release and activation of purinergic P2 receptors are involved in melittin-induced ADAM activation. E-cadherin shedding and EGFR phosphorylation were dose-dependently reduced in the presence of ATPases or P2 receptor antagonists. The involvement of P2 receptors was underscored in experiments with HEK cells, which lack the P2X7 receptor and showed strikingly increased response to melittin stimulation after transfection with this receptor. Our study provides new insight into the mechanism of melittin function which should be of interest particularly in the context of its potential use as an anti-inflammatory or anti-cancer agent.


Assuntos
Proteínas ADAM/metabolismo , Queratinócitos/efeitos dos fármacos , Meliteno/farmacologia , Receptores Purinérgicos P2X7/metabolismo , Proteínas ADAM/genética , Proteína ADAM10 , Proteína ADAM17 , Trifosfato de Adenosina/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Western Blotting , Caderinas/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Embrião de Mamíferos/citologia , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Células HEK293 , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Receptores Purinérgicos P2X7/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Med Microbiol Immunol ; 201(2): 231-7, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22484833

RESUMO

In the summer of 2010, parenteral nutrition (PN) admixtures were administered to neonates in the Pediatric Department of the University Medical Center Mainz that provoked severe clinical sequelae. Contamination of a dummy infusion with Enterobacter cloacae and Escherichia hermannii was detected on the day of the incident, and the same isolates were subsequently grown from all PN admixtures as well as from the parent amino acid solution from which the admixtures had been prepared. Quantitative microbiological analyses paired with the determination of endotoxin concentrations enabled the conclusion to be reached that the amino acid solution had represented the primary source of contamination, which must have occurred in the distant past and may have derived from passage of the bacteria through a crack in the glass container. The findings have large implications, and the approaches employed should become of value when similar incidents occur again in the future.


Assuntos
Infecção Hospitalar/microbiologia , Contaminação de Medicamentos , Enterobacter cloacae/isolamento & purificação , Escherichia/isolamento & purificação , Soluções de Nutrição Parenteral , Sepse/microbiologia , Carga Bacteriana , Infecção Hospitalar/etiologia , Endotoxinas/análise , Alemanha , Hospitais Universitários , Humanos , Recém-Nascido , Sepse/etiologia
19.
Blood ; 119(18): 4301-10, 2012 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-22403252

RESUMO

Severe Plasmodium falciparum malaria evolves through the interplay among capillary sequestration of parasitized erythrocytes, deregulated inflammatory responses, and hemostasis dysfunction. After rupture, each parasitized erythrocyte releases not only infective merozoites, but also the digestive vacuole (DV), a membrane-bounded organelle containing the malaria pigment hemozoin. In the present study, we report that the intact organelle, but not isolated hemozoin, dually activates the alternative complement and the intrinsic clotting pathway. Procoagulant activity is destroyed by phospholipase C treatment, indicating a critical role of phospholipid head groups exposed at the DV surface. Intravenous injection of DVs caused alternative pathway complement consumption and provoked apathy and reduced nociceptive responses in rats. Ultrasonication destroyed complement-activating and procoagulant properties in vitro and rendered the DVs biologically inactive in vivo. Low-molecular-weight dextran sulfate blocked activation of both complement and coagulation and protected animals from the harmful effects of DV infusion. We surmise that in chronic malaria, complement activation by and opsonization of the DV may serve a useful function in directing hemozoin to phagocytic cells for safe disposal. However, when the waste disposal system of the host is overburdened, DVs may transform into a trigger of pathology and therefore represent a potential therapeutic target in severe malaria.


Assuntos
Coagulação Sanguínea/fisiologia , Via Alternativa do Complemento/fisiologia , Eritrócitos/parasitologia , Plasmodium falciparum/fisiologia , Vacúolos/fisiologia , Animais , Coagulação Sanguínea/efeitos dos fármacos , Via Alternativa do Complemento/efeitos dos fármacos , Sulfato de Dextrana/farmacologia , Hemeproteínas/fisiologia , Hemólise , Humanos , Hipestesia/etiologia , Membranas Intracelulares/fisiologia , Pulmão/parasitologia , Malária Falciparum/sangue , Malária Falciparum/complicações , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Masculino , Monócitos/parasitologia , Limiar da Dor , Fagocitose , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/ultraestrutura , Ratos , Ratos Sprague-Dawley , Baço/parasitologia
20.
Blood ; 118(18): 4946-56, 2011 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-21911835

RESUMO

Sequestration of parasitized erythrocytes and dysregulation of the coagulation and complement system are hallmarks of severe Plasmodium falciparum malaria. A link between these events emerged through the discovery that the parasite digestive vacuole (DV), which is released together with infective merozoites into the bloodstream, dually activates the intrinsic clotting and alternative complement pathway. Complement attack occurs exclusively on the membrane of the DVs, and the question followed whether DVs might be marked for uptake by polymorphonuclear granulocytes (PMNs). We report that DVs are indeed rapidly phagocytosed by PMNs after schizont rupture in active human serum. Uptake of malaria pigment requires an intact DV membrane and does not occur when the pigment is extracted from the organelle. Merozoites are not opsonized and escape phagocytosis in nonimmune serum. Antimalarial Abs mediate some uptake of the parasites, but to an extent that is not sufficient to markedly reduce reinvasion rates. Phagocytosis of DVs induces a vigorous respiratory burst that drives the cells into a state of functional exhaustion, blunting the production of reactive oxygen species (ROS) and microbicidal activity upon challenge with bacterial pathogens. Systemic overloading of PMNs with DVs may contribute to the enhanced susceptibility of patients with severe malaria toward invasive bacterial infections.


Assuntos
Neutrófilos/parasitologia , Fagocitose/fisiologia , Plasmodium falciparum/patogenicidade , Vacúolos/fisiologia , Animais , Contagem de Células Sanguíneas , Morte Celular/imunologia , Eritrócitos/parasitologia , Eritrócitos/patologia , Humanos , Malária Falciparum/sangue , Malária Falciparum/imunologia , Malária Falciparum/metabolismo , Malária Falciparum/parasitologia , Merozoítos/imunologia , Merozoítos/metabolismo , Merozoítos/patologia , Merozoítos/fisiologia , Modelos Biológicos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/fisiologia , Fagocitose/imunologia , Plasmodium falciparum/imunologia , Plasmodium falciparum/metabolismo , Plasmodium falciparum/ultraestrutura , Espécies Reativas de Oxigênio/metabolismo , Especificidade por Substrato , Fatores de Tempo , Vacúolos/metabolismo , Vacúolos/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...